
www.manaraa.com

Adapting Legacy Computational Software for XMSF

Elizabeth L. White
J. Mark Pullen

Department of Computer Science and C3I Center
George Mason University

Fairfax, VA 22030
white@cs.gmu.edu; mpullen@gmu.edu

Keywords:

Web Services, legacy software, XMSF, FORTRAN, Java, C++

ABSTRACT: The new Extensible Modeling and Simulation Framework (XMSF) shows great promise toward
achieving interoperation among many previously independent software elements, using emerging Web standards and
the Web services model. We have studied two different approaches to adapting existing software not previously
interfaced with other models. One option is to recode the component in an object-oriented language such as Java. The
second option is to wrap the legacy code with bindings for one of these languages. In both cases, the functionality can
then be exported as a Web Service. While both techniques are feasible, our limited experience to date indicates that re-
use of the legacy code is more effective than trying to re-engineer the code into another language. This paper will
report on the techniques we have found valuable and other experience garnered in adapting existing models to XMSF
linkage.

1. Introduction

The 2002 Extensible Modeling and Simulation
Framework (XMSF) report [1] makes a strong case
that Web-based technologies have the capability to
support interoperability across the spectrum of DoD
models and simulations including constructive, virtual,
and live modes as well as integrating legacy simulation
frameworks and the increasingly important distance-
learning technologies. One of the goals of the work
done by this community is to define a consistent
framework for integrating the new technologies to meet
future challenges in a way that also harmonizes as
much as possible with legacy systems.

This paper describes preliminary work and insights into
integration of legacy software systems into this
framework using the Web Services model. We started
this work on legacy code with a number of goals in
mind. First, the approach should be easy to apply.
Second, platform independence would allow the
technique to be widely adapted. Finally, we wanted to
use inexpensive or freely available tools. These goals
led us to an integration approach centered on Java,
combined with a publicly available Simple Object

Access Protocol (SOAP) implementation. In Section 2, we
provide a brief description of Web Services and the
associated technologies that we have used. In Section 3, we
describe the strategies for incorporating legacy software into
the Web Services model and outline the tradeoffs. Several
demonstrations of the legacy based services are described
briefly in Section 4.

2. Web Services

A Web Service is a self-contained, self-describing unit of
modularity for publishing and delivering XML-based digital
services over the Internet. Web services are the natural
extension of the concept of a resource. They are designed to
accept messages (encoded in XML) and return replies (also
encoded in XML) to these messages. A Web Service's
externally visible behavior is described in terms of the
syntax, semantics, and sequencing of messages exchanged
between the service provider and its client. Described using
an XML Schema vocabulary, a Web Service interface
description document specifies a contract between the
service provider and its client.

www.manaraa.com

Web Services can communicate directly with other
Web Services in a peer-to-peer manner, or using the
traditional client/server model via an HTTP server
listener. Similar to components, each Web Service
publishes a discoverable interface, which can be
addressed or referenced via a URI (i.e. a URL or
URN). Web Services can be invoked over a variety of
transport protocols including TCP, HTTP, SMTP and
message oriented middleware.

The Web Services model, described in the following
section, provides a unifying framework for combining
the information sharing and document distribution
aspects of the Web functionality with its role as a
platform for automation and integration of businesses
functions. The primary supporting technologies are
described in Section 2.2.

2.1 THE WEB SERVICES MODEL

The Web Services model consists of three main
components: provider, consumer and registry, as
shown in Figure 1. In order to utilize a Web Service, a
consumer application (possibly another Web Service)
would first use a registry to discover a provider of the
needed service and to learn about how to invoke the
service. A consumer of a Web Service will be able to
bind to a service provider without necessarily knowing
the interfaces or any published binding information, as
long as the request for service complies with the agreed

upon attribute-based discovery protocols.

A consumer invokes the Web Service over a network (e.g.
the Internet or an intranet) by providing the appropriate input
parameters and receiving any output parameters. Web
Services technologies define the messaging standards for
packing and exchanging typed information between the
producer and consumer of a Web Service.

Technologies such as XML[2] and SOAP [3,4] play
foundational roles in defining the notion of Web Services.
These technologies are still evolving; however, given the
tremendous level of commercial interest and investment by
the commercial vendors, standards already exist and it is
expected that the technology will mature rapidly and acquire
the level of functionality and stability required for its broad
deployment.

2.2 XML

XML was originally heralded as the next generation of
HTML, with the ability to enable the separation of content
from presentation. While this is certainly a core feature,
XML is now more appropriately regarded as the universal
meta-language of the Web. XML is already being used for
data, content, messaging, and computing to provide point-to-
point integration in a platform-neutral way. XML schemas
provide a standard way to define the structure, content and
semantics for XML documents. This definition also serves

Figure 1. Web Service Components

Service

Provider

Service
Consumer

Service

Registry

Bind

Publish Query

www.manaraa.com

as a specification that is used by XML parsers to
validate XML documents.

The generation of lightweight, XML-based,
application-level protocols now emerging ultimately
will provide viable alternatives to the existing RPC-
based distributed computing while relying on native
Web technologies. Of these, XML, HTTP, SOAP,
WSDL, and UDDI are generally regarded as
mandatory pieces of the Web Services puzzle. Most of
these technologies are still in the early stages of
development and standardization, a process that is
crucial to ensuring the interoperability of Web Services
as a computing platform. XML, HTTP, and SOAP are
agreed upon standards at this time, although all of these
will continue to evolve.

2.3 Simple Object Access Protocol (SOAP)

The Simple Object Access Protocol (SOAP) is an
XML-based, lightweight messaging protocol for
exchange of typed information in decentralized,
distributed environments. SOAP can enable
interoperability among (existing) distributed
applications running on disparate, heterogeneous
platforms using a modest infrastructure. The key
guiding principles in the design of SOAP are simplicity
and extensibility by modularity. As such, SOAP does
not define a programming model nor does it require a
specific network transport. Instead, it simply consists
of a modular packaging mechanism and a set of
encoding rules.

SOAP provides a message format, type information
and encoding mechanism that allows applications on
different platforms to exchange information,
irrespective of their underlying operating system,
object model or programming language. The SOAP
packaging mechanism allows for expressing complex
communication semantics ranging from RPC-style
calls to general message passing (with or without
queuing). The encoding rules, on the other hand, define
a data serialization format for exchanging application
or platform-specific datatypes.
Encoded as a XML document, a SOAP message is a
one-way transmission routed along a message path,

which in addition to its final destination, can optionally
identify one or more intermediaries. The root of the XML
document, called the SOAP envelope, is the overall
construct used for structuring the message payload and
specifying its recipient(s). SOAP messages can be
alternatively carried by (or late bound to) HTTP, SMTP, or
TCP among other network transports. As such, SOAP
messages can contain either document-oriented or
procedure-oriented information. To model a specific
interaction (messaging) pattern, (e.g., a request/response or a
multicast pattern) SOAP messages must be grouped and
routed along the appropriate specific message path where at
each routing point they can be acted upon by an
intermediary actor.

3. From Legacy Code to Web Services

As stated in the introduction, we started this work on
generating Web Services from legacy code with a number of
goals in mind:

• Easily implementable – our approach should be well
described and straightforward to apply. In addition, we
wanted steps that were potentially automatable1.

• Platform independent – our approach should deal with
heterogeneous platforms.

• Freely available software – tools for our approach
should be low-cost.

Following these goals, the integration approach chosen
centers on Java and a publicly available SOAP
implementation. The resulting implementation, as shown in
Figure 2, assumes a service consumer that sends and
receives SOAP messages. The service provider has a Java
front end that processes requests. Initially we had planned to
only look at FORTRAN legacy codes; however, finding
unclassified FORTRAN code that would be of interest to the
simulation community provided to be more challenging than
we anticipated. While we also considered how to process
FORTRAN legacy code, we discovered C++ simulation
code [5] of interest to the community and demonstrated our
methodology with this as well.

Because most legacy code in which we were interested is not
Java, the first step is to either convert the existing code to

1 Although we did not address ease of automation directly, a
number of the steps in the process could potentially have
tool support.

www.manaraa.com

Java or create a Java front end for the code. Regardless
of the starting language, once we have Java-based
components to work with, they are transformed into
Web services as described in 3.2.

Figure 2: Java based Web Services

3.1 Legacy Code

As mentioned above, there are two feasible approaches
to transforming legacy components into Java-based
components. In the first approach, the legacy code can
be converted to Java and then made into a Web
Service. Alternatively, a Java wrapper can be created
that uses the Java Native Interface (JNI) to 1) transform
the input data from a Java type to one understood by
the native language, 2) call the native function and 3)
transform the result to a Java data type. We have
successfully applied both of these approaches to
FORTRAN code. For C++ code, we have only tried
the second approach; however, there are tools capable
of converting C++ to Java.

3.1.1 Source-to-Source Transformation of Legacy
Code to Java

One way to create a Java Web service from legacy
code is to reimplement the functionality in Java, either
automatically via source-to-source transformation
techniques or by hand. Taking this approach to
producing Web Services from legacy software means
that the resulting executable can be run on any
architecture that supports Java, even if it does not have
a compiler for the legacy language.

Our initial interest was in the transformation of legacy
FORTRAN code. While there are some tools to facilitate the
transformation from FORTRAN to Java, including a tool
named f2j [6], we found that the process was not completely
automatable for non-trivial code. For example, the tool we
used did not deal with all of the data types used in
FORTRAN77 code and had limitations on the control flow.
 For this reason, we completed the transformation by hand2,
although we did use some of the techniques described in the
f2j paper, including using their mechanisms for call
invocation and for common blocks. Not surprisingly, we
found manual transformations to be very time-consuming
and error prone. For example, because we were dealing with
FORTRAN, a language that allows implicit variable
declarations, one source of problems turned out to be finding
the correct location for the (approximately 350) data
declarations in one of our legacy code samples.

In addition to the problems associated with manual source
code transformations in general, there are several more
fundamental problems. First, access to the source code is
required but there are a number of reasons why this might
not be possible. In addition, although the transformed code
may appear to work correctly, it is difficult to be confident
about the correctness without extensive testing of the Java
component.

Performance is a potential weakness of this approach. The
resulting Java component, unless optimized, may run slower
than the original code. In the case of FORTRAN77
legacy code, this is not a surprising result considering we
were comparing an interpreted program with code generated
by a highly effective optimizing FORTRAN compiler.

3.1.2 Creating Java Wrappers for Legacy Code

In addition to looking at source code transformation, we
looked at techniques for using the Java Native Interface
(JNI) [7] to create Java wrappers that could use the native
code executable directly. This approach results in a faster
component, although the component itself may not be
portable. An argument in favor of this approach is that the
legacy code has (presumably) already been tested and this
reduces the amount of testing required for the Service itself.

2 Small pieces of this source to source transformation were
done by writing simple specifications in Lex.

SOAP
Messages

Service
Consumer

Service Provider

Legacy Code

www.manaraa.com

The JNI interface provides a mechanism for Java code
to interact with C, C++ and (via C++) FORTRAN
code. We will briefly describe the process for
FORTRAN77 code that runs on Solaris; C++ code only
requires part of this process. Any of several standard
JNI references, including [6], provide complete details.

For the purposes of this example, assume we start with
a simple FORTRAN function ADD that takes two
small floating point arrays (A,B) and returns a floating
point number (C).

REAL FUNCTION ADD *8(A,B)

REAL *8 A, B

DIMENSION A(4), B(4)

…

RETURN

END

Several steps are required to create a Java-based
executable component that uses the legacy
FORTRAN77 subroutine:

1. Write the Java wrapper object (see Appendix A), a

public class that declares a native (non-Java)
function with parameters types similar to that of
the FORTRAN code (two floating point arrays and
a floating point variable) and loads the shared
library. The main function simply contains a call
to the declared native function.

2. Compile the Java code, creating a class file. Next,
process this class file with the javah tool to create
a header file that is used in the next step.

3. Write a C++ (or C) implementation that will serve
as an intermediary between the Java wrapper and
the native FORTRAN code3. As seen in Appendix
B, we call this function add_. In addition to
declaring and invoking external function add_, this
code allocates and deallocates space for the array
parameters so that the legacy FORTRAN code can
get to this data. It also includes two header files,
one that is automatically created using the javah
tool (as described in the second step) and a second,
jni.h, that provides information the native code
needs to call JNI functions. The parameters of
add_ and the naming conventions for the C++

3 This step is required because JNI cannot link directly
to FORTRAN; however, both C and C++ can.

functions and data types are dictated by the JNI
interface. .

4. Compile both the FORTRAN (using the appropriate
compiler and creating an object file) and the C++ code
into a dynamic shared library4. The name of the shared
library should correspond to the name given in the Java
wrapper code.

Java and C++ code for steps 1 and 3 are shown in
Appendixes A and B respectively. The process is
summarized in Figure 3, which focuses on the files that are
created. Although there appear to be a number of steps, the
most difficult part is producing the C++ and Java
components. However, we believe that this code can be
automatically generated given the signature of the
FORTRAN code to be transformed and we are investigating
this direction.

FORTRAN77 subroutines can be wrapped similarly. In this
case, it will be necessary to understand the legacy code in
order to determine which of the parameters have return
values that need to be returned as part of the result of the
Web Service. The associated C++ and Java parameters will
need to be passed appropriately.

The resulting Java class component (which uses the library
produced in step 4) can be run standalone; however, our
interest is in providing this functionality as a Web Service.
The next section describes how this component can be used
as the basis for service.

3.2 Java Web Services

Transforming a Java component into a Web Service is a
relatively painless process. A number of tools closely track
the emerging standards for web-based interaction and they
are quite straightforward to use, requiring developers to
know only minimal XML and SOAP. For our
implementations, we used Axis[8], which is the third
generation of Apache SOAP. There are several approaches
to using Axis for taking an existing Java component and
transforming it into a web service. We describe the
intermediate level approach briefly in this section.

4 In Windows, one would create a dynamic link library
(DLL).

www.manaraa.com

Figure 3: Creating a Java Class file (AddJava.class)
from FORTRAN code. Shared library AddFortran.so
is used by the Java class at runtime

To deploy existing code as a Web Service, it is first
necessary to write a java web service backend (JWS)
file that calls the existing class. Appendix C contains a
server JWS file for the example of the previous section,
as well as client code. When a web request is made by
a client to a Java file that is stored with a .jws
extension, Axis compiles the file and invokes the
Service it provides.

This method is quick, easy and does not require that the
implementer know anything about SOAP and remote
procedure calling. However it requires access to the
source code and is difficult to debug. In addition, there
is limited configuration control with this method. Axis
allows more tailoring of the service using a Web
Service Deployment Des criptor (WSDD). However,
we have not experimented with this additional
functionality.

4. Our Experiments to Date

Our focus to date has been on the feasibility of creating
Web Services from legacy software and on the
tradeoffs between various methodologies for this

process. The work described in this paper resulted in several
demonstrations. The most interesting of these is called
Cannon. It was built from the C++ software package that is
distributed as part of [5]. The code chosen allows the player
to try to hit a target using a cannon. This simple
demonstration is interactive; the player types in information
about speed, height and angle in the graphical user interface.
This information, including the starting location, is used to
calculate a new location for the cannonball as it moves
toward the target. The result is graphed and then a new
calculation is done using the result from the previous
invocation as the starting location. Calculations are made
repeatedly until the cannonball hits the ground. At this
point, the user interface reports either a hit or miss. If the
user has missed, they can update the values and try again.
Figure 4 shows three different tries by the player to hit the
target. In each try, every point in the arc is computed by a
function call.

To build this demonstration, we extracted the C++ code that
computed the new location of the cannonball and converted
it into a separate web service by wrapping it as a Java
component. The client code was only modified by changing
the original call to an Axis remote procedure call. Since this
code is inside a loop, a Web Service call is made every time
a new location is needed for visualizing. The server code
was also wrapped in Java.

Our initial work was with FORTRAN77 legacy code. The
study of source-to-source transformation mechanisms versus
wrapping native code for FORTRAN was based on several
pieces of FORTRAN77 legacy code, including a component
of approximately 500 lines (and almost 400 variables).
However, to date, we have only built demonstrations using
the example code of the previous section. We have two
different versions of the server code. In one version, we
transformed the functionality to Java; in the other version,
the FORTRAN77 code has been wrapped with C++ and
Java as described in the previous section.

5. Conclusions and Future Work

This work focused specifically on integration of legacy
software. Our work is still in progress however, we have had
more success with wrapping legacy software than in
performing transformations. We are currently building

link

compile

compile

javah

compile

add.f -
 legacy

add.o

AddJava.cp

AddJava.

AddJava.ja

AddJava.clas

AddFortran.s

AddJava.
h

www.manaraa.com

additional demonstrations for our web services. The
next steps will be to use these web services in real
distributed simulations and to assess their performance
and usability.

There are a number of other issues that will have to be
addressed to enable secure, transparent use of Web
Services in XMSF. One issue that we did not address
during the course of this work was the question of what
the characteristics of the software to be converted
should be. In particular, module size must be
considered; because the use of a web services implies
overhead for the invocation, a service that could be
implemented in a few lines of code would not be
useful. In addition, a service needs to be relevant to a
number of applications to make the time spent
converting the code worthwhile.

We also have not yet addressed the issue of registries
and dynamic discovery and integration of services.
Clearly, this will become of increasing interest in the
XMSF community as the pool of available services
grows. A common XSMF registry would allow
increased use of these legacy components, as well as
new components.

Acknowledgements

This work was supported in part by the US Defense
Threat Reduction Agency.

References

[1]Brutzman, D., K. Morse, J. M. Pullen and M.
Zyda, Extensible Modeling and Simulation
Framework (XMSF): Challenges for Web-Based
Modeling and Simulation, Naval Postgraduate
School, Monterey, CA, 2002.

[2] eXtensible Markup Language (XML),

http://www.w3c.org/xml

[3] Simple Object Access Protocol (SOAP),
http://www.w3c.org/soap

[4] Box, D., Ehnebuske, D, Kakivaya, G., Layman, A.,
Mendelsohn, N., Nielsen, H.F., Thatte, S., and Winer,
D.: SOAP: Simple Object Access Protocol. In MSDN
Library, Microsoft, January 2001.

[5] Bourg, David M.: “Physics for Game Developers”,
O’Reilly & Associates Inc, 2003.

[6] Fox, G., Li, X. Qiang, Z., and Zhigang, W.: “A
Prototype of FORTRAN-to-Java Converter”,
Concurrency - Practice and Experience, 9(11): 1047-
1061, 1997.

[7] Liang, S.: “The JavaTM Native Interface: Programmer's
Guide and Specification, Addison Wesley Longman,
Inc. 1999.

[8] Axis: http://ws.apache.org/axis

Author Biographies

Elizabeth White is an Associate Professor of Computer
Science at George Mason University. She received M.S. and
Ph.D. degrees in Computer Science from the University of
Maryland, College Park. Her research interests include
software architecture, programming languages and
compilers, distributed computing, Web technologies and
dynamic reconfiguration.

J. Mark Pullen is a Professor of Computer Science at
George Mason University, where he heads the Networking
and Simulation Laboratory in the C3I Center. He holds
BSEE and MSEE degrees from West Virginia University,
and the Doctor of Science in Computer Science from the
George Washington University. He is a licensed
Professional Engineer, Fellow of the IEEE and Fellow of the
ACM. Dr. Pullen teaches courses in computer networking
and has active research in networking for distributed virtual
simulation and networked multimedia tools for distance
education.

www.manaraa.com

Figure 4. Cannon Demonstration

Appendix A: Java Code

package test;
public class AddJava
{
 public double call_addArray(double[] array1,
 double[] array2) {
 // create a AddJava object instance
 double sum = addArray(array1,array2);
 return sum;
 }
 // native method declaration
 public native double addArray(double[]Aarray,
 double[] Barray);
 // Load DLL (or shared library) which
 // contains implementation of native methods
 static
 {
 System.load("libaddFortran2.so"); }
}

Appendix B: C++ code

#include <jni.h> // JNI header file
#include “test_AddJava.h” // generated from javah
 // declare the external function
extern “C” void add_(double[],double[]);
 // C++ function that is called from the Java.
JNIEXPORT jdouble JNICALL
 Java_test_AddJava_addArray(JINEnv *env,
 Jobject jobj, jdoubleArray jarr1,
 jdoubleArray jarr2)
{ // allocate space for the arrays
 jdouble *tPtr1 =
 env-> GetDoubleArrayElements(jarr1,0);
 jdouble *tPtr2 =
 env-> GetDoubleArrayElements(jarr2,0);
 // call the external function
 jdouble result = add_(tPtr1,tPtr2);
 // deallocate the space
 env->ReleaseDoubleArrayElements(jarr1,tPtr1,0);
 env->ReleaseDoubleArrayElements(jarr2,tPtr2,0);
 return result;
}

www.manaraa.com

Appendix C: Axis (SOAP) Code

Web Server :

import org.apache.axis.MessageContext;
/*** Web service to calculate the sum of elements in 2
arrays. */
public class sumsrv
{
 /**
 * Calculates the sum.
 * @param msgContext This is the
 * Axis message processing
 * Context.
 * @param array1 first array
 * @param array2 second array
 * @exception Exception most likely
 * a problem accessing
 * the DB
 */
public static double call_addArray(
 MessageContext msgContext,
 double[] array1, double[] array2)
 throws Exception
 {
 AddJava srv = new AddJava();
 return srv.call_addArray (array1,
 array2);
 }
}

Web Client :

import org.apache.axis.client.ServiceClient;
/*
 * Sum web service client
*/
public class addClient {
 public static void main (String args[]) {
 /* Service URL */
 String url;
 double[] a1 = {1.1, 2.2, 3.3, 4.4};
 double[] a2 = {1.01, 2.02, 3.03, 4.04};
 if (args.length < 1) {
 System.out.println("Usage: java addClient url ")
 return;
 }
 try {
 url = args[0];
 /**
 * Invoke the sum web service
 */
 ServiceClient call = new ServiceClient(url);
 Object[] params = new Object[]{a1, a2};
 Double result = (Double)call.invoke("",
"call_addArray", params);
 System.out.println("Get sum: " + result.doubleValue());
 }catch((Exception e) {
 e.printStackTrace();
 }
 }
}

